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Transition metal catalyzed atom and group transfer reactions
are important tools in both Nature’s and the synthetic chemist’s
arsenal for the assembly of functionalized molecules. Iodosyl-
benzene (PhIO) has served as a critical primary oxygen atom
source in many synthetic and biomimetic studies.1 The emergence
of (tosyliminoiodo)benzene2 (PhINTs, Ts) p-toluenesulfonyl),
a nitrene analogue of iodosylbenzene, has allowed parallel
development of new classes of powerful catalytic imination and
aziridination reactions.3 These two iodonium ylides are popular
due to their effectiveness, relative ease of preparation, and rather
innocuous byproduct PhI.4 Catalytic reactions that employ these
reagents are heterogeneous due to their insoluble nature,5 and
efforts to improve catalytic performance or to gain mechanistic
insights are hindered. Systematic studies of the structures of PhIO
and ArINSO2Ar′ reveal extensive networks of I‚‚‚O and I‚‚‚N
secondary bonds and highly aggregated polymeric networks.6,7

We initially reasoned that disruption of these intermolecular
electrostatic forces could be achieved by the addition of external
materials having large dipoles, such as trimethylamine-N-oxide.
Although PhINTs can be readily solubilized by Me3NO in CDCl3,
a drop in the activity of PhINTs occurs.8 New iodonium ylides
ArIX (X ) O or NTs) having strong internal dipoles have thus
been engineered for introducingintramolecularI‚‚‚O secondary
bonds to replaceintermolecularI‚‚‚N and I‚‚‚O secondary bonds.
These highly reactive primary oxo and tosylimino sources display
impressive solubility in organic media. In addition, single-crystal
X-ray analysis of the primary tosylimino source reveals several
fascinating structural features.

The synthesis of the organoiodine(III) species is outlined in
Scheme 1. Oxidation of19 with peracetic acid leads to the
(diacetoxyiodo)arene2. For maximal and most expedient yields
of the target ylides,2 is used without purification or workup.
The corresponding pale yellow (tosyliminoiodo)arene (3) and
bright yellow iodosylarene (4) are thus obtained in 78 and 95%
yields (based on1), respectively.10 The solution properties of3
and4 are quite remarkable. Compound3, for example, will readily
dissolve in chloroform (ca. 0.14 M at room temperature, at least
a 50-fold increase over PhINTs), dichloromethane, and acetoni-
trile. The impressive solubility properties of3 are exhibited, albeit
to a lesser extent, in the corresponding iodosylarene4. Solutions
of up to 0.08 M in4 can be obtained in CHCl3. Solutions of3 in
CDCl3 show little signs of decomposition during a 20 h period
(<8%), thereby demonstrating the remarkable ability of the
internal I‚‚‚O secondary bond to stabilize the low-coordinate
hypervalent iodine atom. Such results are significant in that many
reactions utilizing PhINTs are plagued by hydrolytic side reac-
tions.11 13C{1H} NMR spectra of3 and 4 in CDCl3 display
resonances shifted downfield for theipsoaromatic carbon atoms
at 115.5 and 117.9 ppm relative to1 (δ 94.6) that clearly signal
oxidation to I(III).12

Single crystals of3 suitable for X-ray structural analysis have
been grown from acetonitrile and the resulting details are
presented in Figure 1.13 Several features are noteworthy. First,3
is loosely associated into centrosymmetric dimers by long-range
intermolecular I‚‚‚N and I‚‚‚O bonds (>3.0 Å), quite unlike the
infinite polymeric chains adopted in the solid state for PhIO and
PhINTs. Second, as anticipated, one of the sulfonyl oxygen atoms
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forms a short intramolecular I‚‚‚O secondary bond to the
hypervalent iodine atom with a I‚‚‚O bond length of 2.667(3) Å.
Third, the nitrogen atom of the NTs group is located essentially
in the plane of the iodoarene ring trans to the sulfonyl oxygen
atom of the sulfone moiety (O2). The NSO2Ar′ group in all
previous structurally characterized ArINSO2Ar′ is located above
the plane of the iodoarene ring, presumably a result of steric
interactions between the NSO2Ar′ group and the ortho proton of
the iodoarene ring.7 The strength of the intramolecular I‚‚‚O bond
seems sufficient to overcome this interaction and thus3 resembles
a number of cyclicλ3-iodinanes.4

Initial assessment of the ability of3 and4 as primary sources
of oxygen atoms and tosylimino groups is summarized in Scheme
2. Compound3 and4 react rapidly with tertiary phosphines and
thioethers and afford the corresponding products of oxo and
tosylimino transfer.14 Copper-catalyzed aziridination of styrene
andtrans-stilbene by3 proceeds efficiently for both substrates.15

Iodosylarene4 is also effective for the manganese-catalyzed
epoxidations of styrene and stilbene.16 For example, the epoxi-
dation of styrene by4 catalyzed by [Mn(salen)OAc] produced
the expected epoxide in 31% yield. This reaction, however, is
also accompanied by a considerable amount of a precipitate that
we have identified as the iodoxyarene5.17 The iodoxyarene results
from a competitive disproportionation of the iodosylarene by the

catalyst (eq 1).

Indeed, increasing the ratio of styrene to4 to 20:1 from 5:1
increases the amount of epoxide formed (51%) and reduces the
quantity of5 formed. The manganese-catalyzed disproportionation
of 4 is rapid (and quantitative) in the absence of olefin. In the
absence of catalyst the disproportionation of4 is slow (t1/2 ∼ 6 h
in CDCl3). Disproportionation of iodosylbenzene has been previ-
ously noted and it has been predicted that an iodosylarene
solubilized by introducing substituents would be increasingly
susceptible to disproportionation unless steric effects could inhibit
disproportionation.18,19

The new soluble iodonium ylides presented here are expected
to lend added flexibility to catalytic atom and group transfers by
offering homogeneous conditions, to provide opportunities to
conduct studies at reduced temperatures, and to facilitate the
search of new catalysts for atom and group transfer reactions by
combinatorial methods.20 We are currently also exploring means
for the incorporation of chiral dipole groups into these ylides.21
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Figure 1. Structural diagram for compound3. Selected bond distances
(Å) and angles (deg): I-N, 1.982(3); I-C8, 2.145(3); I‚‚‚O4, 2.677(3);
I‚‚‚N′, 3.105(3); I‚‚‚O2′, 3.550(3); S1-N, 1.629(3); S1-O1, 1.446(3);
S1-O2, 1.440(3); S2-O3, 1.437(2); S2-O4, 1.455(2); N-I‚‚‚O4,
170.92(9); C8-I‚‚‚O4, 73.3(1); C8-I-N, 97.9(1).

Scheme 2

2ArIO f ArI + ArIO2 (1)
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